Study better. Learn faster. Get the grade you want.
Discover why millions of students use us to learn better.

- StudyBlue
- Massachusetts
- Belmont High School
- Freshman Physics
- Lefebvre
- Physics SAT II Formula Flashcards

Sign up now and start studying these cards for FREE
V_{esc} = escape velocity; the minimum velocity required to escape a gravitational field

v_{avg} = Δd/Δt

v_{avg} = average velocity

Δd = displacement

Δt = elapsed time

v_{avg} = (v_{i} + v_{f})/2

v_{avg} = average velocity

v_{i} = initial velocity

v_{f} = final velocity

a = Δv/Δt

a = acceleration

Δv = change in velocity

Δt = elapsed time

Δd = v_{i}Δt + ½a(Δt)^{2}

Δd = displacement

v_{i} = initial velocity

Δt = elapsed time

a = acceleration

Δd = v_{f}Δt - ½a(Δt)^{2}

Δd = displacement

v_{f} = final velocity

Δt = elapsed time

a = acceleration

v_{f}^{2 }= v_{i}^{2} + 2aΔd

v_{f} = final velocity

v_{i} = initial velocity

a = acceleration

Δd = displacement

F = ma

F = force

m = mass

a = acceleration

W = mg

W = weight

m = mass

g = acceleration due to gravity

F_{f} = μF_{n}

F_{f} = friction fore

μ = coefficient of friction

F_{n} = normal force

p = mv

p = momentum

m = mass

v = velocity

Δp = F(Δt)

Δp = change in momentum

F = applied force

Δt = elapsed time

W = Fd cos(θ)

W = work

F = force

d = distance

θ = angle between F and the direction of motion

W = F_{||}d

W = work

F_{||} = parallel force

d = distance

KE = ½mv^{2}

KE = kinetic energy

m = mass

v = velocity

PE = mgh

PE = potential energy

m = mass

g = acceleration due to gravity

h = height

W = Δ(KE)

W = work done

KE = kinetic energy

ME = KE + PE

ME = total mechanical energy

KE = kinetic energy

PE = potential energy

P = W/Δt

P = power

W = work

Δt = elapsed time

a_{c} = v^{2}/r

a_{c} = centripetal acceleration

v = velocity

r = radius

F_{c} = mv^{2}/r

F_{c} = centripetal force

m = mass

v = velocity

r = radius

v = 2∏r/T

v = velocity

r = radius

T = period

τ = rF sin(θ)

τ = torque

r = distance (radius)

F = force

θ = angle between F and the lever arm

τ = rF_{⊥}

τ = torque

r = distance (radius)

F_{⊥} = perpendicular force

L = mvr

L = angular momentum

m = mass

v = velocity

r = radius

F_{s}= ±kx

F_{s} = spring force

k = spring constant

x = spring stretch or compression

PE_{s} = ½kx^{2}

PE_{s} = potential energy stored in spring

k = spring constant

x = amount of spring stretch or compression

F_{g} = G(m_{1}m_{2}/r^{2)}

F_{g} = force of gravity

G = a constant

m_{1},_{ }m_{2} = masses

r = distance of separation

F_{e} = k(q_{1}q_{2}/r^{2})

F_{e} = electric force

k = a constant

q_{1}, q_{2}, = charges

r = distance of separation

F = qE

F = electric force

E = electric field

q = charge

E = k(q/r^{2})

E = electric field

k = a constant

q = charge

r = distance of separation

E = V/d

E = electric field

V = voltage

d = distance

ΔV = W/q

ΔV = potential difference

W = work

q = charge

V = IR

V = voltage

I = current

R = resistance

P = IV or P = V^{2}/R or P = I^{2}R

P = power

I = current

V = voltage

R = resistance

R_{s} = R_{1 }+ R_{2 }+ …

R_{s} = total resistance in a series circuit

R_{1} = first resistor

R_{2} = second resistor

…

1/R_{p} = 1/R_{1} + 1/R_{2} …

R_{p} = total resistance in a parallel circuit

R_{1} = first resistor

R_{2} = second resistor

…

q = CV

q = charge

C = capacitance

V = voltage

F = ILβ sin(θ)

F = force on a wire

I = current in the wire

L = length of wire

β = external magnetic field

θ = angle between the current direction and the magnetic field

F = qvβ sin(θ)

F = force on a charge

q = charge

v = velocity of the charge

β = external magnetic field

θ = angle between the direction of motion and the magnetic field

v = fλ

v = wave velocity

λ = wavelength

f = frequency

v = c/n

v = velocity of light

c = velocity of light in a vacuum

n = index of refraction

n_{1} sin(θ_{1}) = n_{2} sin(θ_{2})

n_{1} = incident index

θ_{1} = incident angle

n_{2} = refracted index

θ_{2} = refracted angle

1/d_{o} + 1/d_{i} = 1/f

d_{o} = object distance

d_{i} = image distance

f = focal length

m = -(d_{i}/d_{o})

m = magnification

d_{i} = image distance

d_{o} = object distance

Q = mcΔT

Q = heat added or removed

m = mass of substance

c = specific heat

ΔT = change in temperature

Q = ml

Q = heat added or removed

m = mass of substance

l = specific heat of transformation

ΔU = Q - W

ΔU = change in internal energy

Q = heat added

W = work done by the system

E_{eng} = (W/Q_{hot}) × 100%

E_{eng} = % efficiency of the heat engine

W = work done by the enginge

Q_{hot} = heat absorbed by the engine

P = F/A

P = pressure

F = force

A = area

PV/T = constant

P = pressure

V = volume

T = temperature

E = hf

E = photon energy

h = a constant

f = wave frequency

λ = h/p

λ = matter wavelength

h = a constant

p = momentum

γ = 1/√(1-(v/c)^{2})

γ = the relativistic factor

v = speed of moving observer

c = speed of light

v_{esc} = √(2Gm/r)

V_{esc} = escape velocity; the minimum velocity required to escape a gravitational field

G = universal gravitational constant

M = mass of body which produces the gravitational field

R = mean radius of body which produces the gravitational field

v_{orbit} = √(Gm/r)

G = universal gravitational constant

M = mass of body which produces the gravitational field

R = mean radius of body which produces the gravitational field

v_{1}/v_{2} = T_{1}/T_{2 }(Charles' Law)

v_{1, }v_{2} = volume of ideal gas at temperature T_{1 }or T_{2}

T_{1}, T_{2} = Absolute temperature (in Kelvins)

V = k/P (Boyle's Law)

V = volume of ideal gas

k = a constant

P = pressure of ideal gas

(Does not apply in an adiabatic process)

P_{1}V_{1}/T_{1} = P_{2}V_{2}/T_{2}

-Ideal gas law (volume, pressure, time)

-Combo of Charles' and Boyle's Laws

About this deck

Author: Sam K.

Created: 2011-05-31

Updated: 2011-06-02

Size: 58 flashcards

Keywords: flash card flashcards digital flashcards note sharing notes textbook wiki college dorm class classroom exam homework test quiz university college education learn student teachers tutors share, study blue studyblue studyblu

Views: 71

Created: 2011-05-31

Updated: 2011-06-02

Size: 58 flashcards

Keywords: flash card flashcards digital flashcards note sharing notes textbook wiki college dorm class classroom exam homework test quiz university college education learn student teachers tutors share, study blue studyblue studyblu

Views: 71

Simply amazing. The flashcards are smooth, there are
many different types of
studying tools, and there is
a great search engine. I praise
you on the awesomeness.
- Dennis

I have been getting MUCH
better grades on all my tests
for school. Flash cards, notes,
and quizzes are great on here.
Thanks!
- Kathy

I was destroying whole rain forests with my flashcard production, but YOU, StudyBlue, have saved the ozone layer. The earth thanks you.
- Lindsey

This is the greatest app on my phone!! Thanks so much for making it easier to study. This has helped me a lot!
- Tyson

© 2014 StudyBlue Inc. All rights reserved.