- StudyBlue
- Kansas
- University of Kansas
- Physics
- Physics 114
- Ammar
- Physics 114 - Chapter 6 - Work and Energy

Jake L.

Joule

Newton*meter. This unit measures work.

Work

The product of the magnitude of the displacement times the component of the force parallel to the displacement. W=Fd

Advertisement

Kinetic Energy

The energy of motion.

Translational Kinetic Energy

The energy of motion for objects moving in a straight line.

Given by:

Kinetic Energy = 1/2mass*velocity^2

Given by:

Kinetic Energy = 1/2mass*velocity^2

Work-energy principle

The net work done on an object is equal to the change in the object's kinetic energy. ?KE + ?PE = Work by NC forces.

Potential Energy

Energy associated with forces that depend on the position or configuration of an object relative to the surroundings.

Gravitational Potential Energy

Potential Energy due to Earth's gravity. PE = mass*gravity*height

Spring Equation/Hooke's Law

The force that a stretched or compressed spring exerts. F = -kx where k is the spring stiffness constant

Elastic Potential Energy

Potential Energy of Springs

Given by Elastic PE = 1/2 kx^2

Given by Elastic PE = 1/2 kx^2

Conservative Forces

Forces for which the work done does not depend on the path taken (like gravity or a spring)

Nonconservative Forces

Forces for which the work done does depend on path taken (ex: friction)

Advertisement

Total Mechanical Energy

The sum of the kinetic and potential energies at any moment. E=KE+PE

Conserved Quantity

A quantity that remains constant.

Principle of Conservation of mechanical energy

If only conservative forces are acting, the total mechanical energy of a system neither increases nor decreases in any process. It stays constant - it is conserved.

Law of conservation of energy

The total energy is neither increased nor decreased in any process. Energy can be transformed from one form to another, and transferred from one object to another, but the total amount remains constant.

Dissapative Forces

Forces that reduce the total mechanical energy.

Power

the rate at which work is done. P=W/t or P=Fv

Horsepower

A large unit of power. Equal to 746 watts, which are the SI unit of power.

Watt

The SI unit of Power. 1 J/s = 1 watt

Want to see the other 19 Flashcards in Physics 114 - Chapter 6 - Work and Energy?
JOIN TODAY FOR FREE!

"The semester I found StudyBlue, I went from a 2.8 to a 3.8, and graduated with honors!"

Jennifer Colorado School of Mines
StudyBlue is not sponsored or endorsed by any college, university, or instructor.

© 2014 StudyBlue Inc. All rights reserved.

© 2014 StudyBlue Inc. All rights reserved.