To login with Google, please enable popups

or

Don’t have an account? Sign up

To signup with Google, please enable popups

or

Sign up with Google or Facebook

or

By signing up I agree to StudyBlue's

Terms of Use and Privacy Policy

Already have an account? Log in

Reminder

Edit a Copy

Study these flashcards

- StudyBlue
- Massachusetts
- Belmont High School
- Freshman Physics
- Lefebvre
- Physics Sat Ii Formula Flashcards

Sam K.

Size:
58
v_{avg} = Δd/Δt

v_{avg} = average velocity

Δd = displacement

Δt = elapsed time

v_{avg} = (v_{i} + v_{f})/2

v_{avg} = average velocity

v_{i} = initial velocity

v_{f} = final velocity

a = Δv/Δt

a = acceleration

Δv = change in velocity

Δt = elapsed time

Δd = v_{i}Δt + ½a(Δt)^{2}

Δd = displacement

v_{i} = initial velocity

Δt = elapsed time

a = acceleration

Δd = v_{f}Δt - ½a(Δt)^{2}

Δd = displacement

v_{f} = final velocity

Δt = elapsed time

a = acceleration

v_{f}^{2 }= v_{i}^{2} + 2aΔd

v_{f} = final velocity

v_{i} = initial velocity

a = acceleration

Δd = displacement

F = ma

W = mg

F_{f} = μF_{n}

p = mv

Δp = F(Δt)

W = Fd cos(θ)

W = F_{||}d

KE = ½mv^{2}

PE = mgh

W = Δ(KE)

ME = KE + PE

P = W/Δt

a_{c} = v^{2}/r

F_{c} = mv^{2}/r

v = 2∏r/T

τ = rF sin(θ)

τ = rF_{⊥}

L = mvr

F_{s}= ±kx

PE_{s} = ½kx^{2}

F_{g} = G(m_{1}m_{2}/r^{2)}

F_{e} = k(q_{1}q_{2}/r^{2})

F = qE

E = k(q/r^{2})

E = V/d

ΔV = W/q

V = IR

P = IV or P = V^{2}/R or P = I^{2}R

R_{s} = R_{1 }+ R_{2 }+ …

1/R_{p} = 1/R_{1} + 1/R_{2} …

q = CV

F = ILβ sin(θ)

F = qvβ sin(θ)

v = fλ

v = c/n

n_{1} sin(θ_{1}) = n_{2} sin(θ_{2})

1/d_{o} + 1/d_{i} = 1/f

m = -(d_{i}/d_{o})

Q = mcΔT

Q = ml

ΔU = Q - W

E_{eng} = (W/Q_{hot}) × 100%

P = F/A

PV/T = constant

E = hf

λ = h/p

γ = 1/√(1-(v/c)^{2})

v_{esc} = √(2Gm/r)

v_{orbit} = √(Gm/r)

v_{1}/v_{2} = T_{1}/T_{2 }(Charles' Law)

V = k/P (Boyle's Law)

P_{1}V_{1}/T_{1} = P_{2}V_{2}/T_{2}

Sign up for free and study better.

Anytime, anywhere.

Get started today!

Find materials for your class:

Download our app to study better. Anytime, anywhere.